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This paper examines the logical interpretation of quantum mechanics. 
Since this interpretation is based on a proof by Kochen and Specker that 
purports to demonstrate that hidden variable theories for quantum 
mechanics are excluded, the proof and its significance for the understanding 
of hidden variable theories and standard quantum mechanics are discussed. 

1. INTRODUCTION 

Theorems that purport to prove the impossibility of  hidden variable 
reinterpretations of  standard quantum mechanics have prompted a variety 
of  responses. It is apparent that their significance for the understanding of  
the standard theory is far from transparent. One is von Neumann's impos- 
sibility proof, published in 1932. Its significance remained obscure until 
Bell's publication of  1966, and discussion eontinues. 

Another is the hidden variable proof  of  Kochen and Specker (1967). 
On the one hand, Bell (1966) sees no good in it and on the other hand Bub 
(1973a, 1973b, 1974) and others see the proof  as providing the ground of  
and framework for a new "logical" interpretation of  the standard theory 
that radically departs from both the statistical interpretation and the Copen- 
hagen interpretation in its various forms. This paper contains an exposition 
and critique of  this relatively new and novel interpretation. Since the in- 
terpretation is based squarely on the Kochen and Specker proof, it is neces- 
sary to clarify this proof. It has a significance for our understanding of  
quantum theory that goes beyond Bell's discussion of  the result as a corollary 
to an important theorem of Gleason's (1957). In the course of this discussion 
it will be pointed out that advocates of  the logical interpretation attribute 

1 Work supported by the National Science Foundation. 
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a significance to Gleason's theorem that is at once questionable and illuminat- 
ing for the understanding of what completeness means for standard quantum 
mechanics. 

The plan of the paper is as follows. First, there is a presentation of the 
framework of the Kochen and Specker proof. Then follows a discussion 
of the implications of their criterion for an acceptable hidden variable theory 
along with a simplified proof sketch of their principal theorem based on the 
criterion. Next there is a critical discussion of the proof and the grounds for 
their criterion. I then turn to an exposition and examination of the logical 
interpretation. 

2. THE FRAMEWORK OF THE KOCHEN AND SPECKER PROOF 

According to Kochen and Specker, the problem of a hidden variable 
reinterpretation of quantum mechanics is both "controversial and obscure" 
because of conflicting results and the lack of any "exact mathematical 
criterion" by which one could judge the degree of success of various proposed 
hidden variable theories. The authors propose the missing criterion, argue 
for its adoption, and demonstrate that it suffices to rule out hidden variable 
theories for quantum mechanics. Kochen and Specker consider the problem 
of hidden variables for quantum mechanics within a general framework 
that they consider suitable for a discussion of classical and quantum 
mechanics. This framework consists of." a set O of observables, a set S of 
states (subdivided into pure and mixed), a function p which assigns to each 
A in O and pure state $ in S a probability measure on the real line such that 
"pA,(U)" denotes the probability that a measurement of observable A for 
a system in a state ~ yields a value lying in U, where U is a measurable 
subset of the real line R with respect to pA,. A hidden variable theory for 
quantum mechanics may be described within this framework by introducing 
a phase space f2 of hidden states such that every pure state ~b of quantum 
mechanics is interpreted as a mixed state of the hidden variable theory, 
i.e., as a probability measure/z, over f2. In addition, each observable A of 
the standard theory is associated with a real-valued function fA: f2 ~ R, 
such that the following statistical condition is satisfied: 

(I) PA,(U) = v , ( f2  I(U)) 

or equivalently 

Exp, (A) = J-n fa(r) dl~,(r) 

This condition says that the probability that the observable A for a system 
in a state ~b lies in a subset U of R is equal to the probability measure of the 
points mapped into U by the functionfA on fL 
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Now (I) is a necessary condition for an acceptable hidden variable 
theory. Here "acceptable" means that the hidden variable theory yields 
precisely the statistical predictions generated by the standard theory. It is 
usually assumed that the hidden variable distributions rapidly reach an 
equilibrium distribution and remain there. So it is more exact to say that 
an acceptable hidden variable theory agrees with the statistical distributions 
of the standard theory with respect to the equilibrium distributions of the 
hidden variables. This is not mentioned by Kochen and Specker. They simply 
demand that the statistical condition be satisfied. They seem more concerned 
with mathematical criteria than with theoretical considerations that have in 
fact motivated the construction of hidden variable theories. This is further 
illustrated by the fact that their statistical criterion rules out apriori so-called 
"local" hidden variable theories. These theories do disagree with the predic- 
tions of quantum mechanics. Such theories may be untenable on the basis 
of experimental evidence but surely are not to be ruled out because they 
violate a mathematical criterion such as condition (I). They are characterized 
as unacceptable in this paper only in the sense that they are not reinterpreta- 
tions of the standard theory, i.e., do not agree with its predictions. 

Kochen and Specker point out that (I) is not a sufficient condition for 
an acceptable theory. As proof of its insufficiency they cite the fact that the 
condition is satisfied by trivial constructions of hidden variable theories in 
which observables appear as independent random variables. It is just this 
feature of the trivial reconstructions that is declared unacceptable. Typically, 
the observables of a theory are not independent. They are functionally 
related. As an example they cite the fact that the observable A 2 can be 
determined by measuring the value of A and squaring the result. Following 
Kochen and Specker, we may define the function of an observable g(A) for 
every observable A, state 4s, and Borel function g" R --+ R as 

(1) pg<A>~(U) = pA~(g-~(U)) 

On the assumption that the probability function p determines every ob- 
servable, we have it that A = B if for every ~b, PA~, = PB~, and (1) defines 
g(A). Through the functional relations existing among the observables of 
a theory, the set of observables acquires an algebraic structure. Kochen 
and Specker demand that this structure be preserved in a hidden variable 
theory, thus eliminating in one swoop the unwanted trivial constructions 
in which the observables of quantum mechanics are represented by inde- 
pendent random variables on a common phase space. So iffa(h) = a~ (an 
eigenvalue of A) and B = g(A), then for state ]a,), B has the value g(a,); 
i.e., fB(;~)=foca)(;~) = g(an)= g(fa(;~)). Hence, in addition to satisfying 
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condition (I), an acceptable hidden variable theory must also satisfy what 
I will call a functional identity condition: 

(II) f~c~, = g(f~)  

The Kochen and Specker proof then shows that no hidden variable extension 
of quantum mechanics satisfies both (I) and (II). 

3. THE IMPLICATIONS OF THE FUNCTIONAL IDENTITY 
CONDITION 

Before I raise the question of the reasonableness of the functional 
identity condition, it is appropriate to review its implications. First, note 
that a set of observables {Ai} (i ~ L where I is an index set) is said to be 
commeasurable if there exists an observable B and Borel functions {gf}, 
i e / ,  such that A~ = gj(B) for all j ~ I. By a theorem of Neumark's (1954) 
each set of commeasurable observables coincides with observables repre- 
sented by operators that commute pairwise. Now if  At and A2 are corn- 
measurable, At = gt(B), A2 = g2(B), and/~t and tz2 are any real numbers, 
we may define sums and products of commeasurable observables At and 
A2 as 

(2) tzlAt + tzuA2 = (# lg t  + 1~2gz)(B) 

AtA2 = (gtg2)(B) 

The entire set of observables with sums and products for eommeasurable 
observables defined by (2) is appropriately called a "partial algebra." It is 
easy to show that condition (II) demands that these partial operations be 
preserved in a hidden variable extension that associates each observable 
with a random variablefA. For sums we have 

f~al+u2a2 = f~u~ol+u~g~xs, = (Iztgt + 1~2gz)(fn) = Izxgt(fB) + l~2gz(fB) 

=/ztfol(n ~ + /L~fg~(B~ = t~xfal + tz2fa2 

And for products we have 

AxA2 = f~gl.2xB, = gtgz(fB) = gt( fn)gz( fs)  = f~,e>L~<.) = fa,fa~ 

Although partial operations are defined only for commuting operators, 
the intransitivity of commutivity means that condition (II) places restrictions 
on values of hidden variable representatives of noncommuting Hilbert space 
operators. To see this let A, B, and C be operators that commute pairwise 
with the exception of A and C. Also let B be expressible as a function of both 
A and (7, i.e., B = gl(A)  = gz(C). Then by condition (II) we have f ,  = 

fg~ot> = gl(.fa), and fB = fg~c~ = g2(fc). Thus condition (II) imposes the 
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restriction gl(fa) = g2(fc) on the hidden variable representatives of non- 
commuting A and C. This fact, taken by itself, is hardly grounds for an 
objection to the condition. What is of interest is that this fact is intimately 
related to the fact that hidden variable theories cannot satisfy condition (II). 
To display this crucial connection it suffices to consider the essentials of the 
proof that condition (II) cannot be satisfied by a hidden variable theory 
satisfying condition (I). 

As we saw, given the definitions of commeasurability, identity of ob- 
servables, and linear sums and products of commeasurable observables, 
the set of observables for standard quantum mechanics has the structure of 
a partial algebra. Condition (II) implies that the partial operations are 
preserved by the association A --~fa. Now the set R a of functions f :  f~ ~ R 
forms a commutative algebra over R. Kochen and Specker note that con- 
dition (II) implies that there is an imbedding of the partial algebra Q of 
quantum mechanics into the commutative algebra R% where an imbedding 
of a partial algebra PA into PA' is a homomorphism h: PA ~ PA' which is 
one to one into PA', i.e., a map h such that for all commeasurable a, b ~ PA: 

h(a) # h(b) ("#"  designates the binary relation of commeasurability) 

h(#a + )tb) = izh(a) + )th(b) 

h(ab) = h(a)h(b) 

h(1) = 1 

The imbedding of Q into R ~ in turn implies the imbedding of the re- 
striction of Q to a partial Boolean algebra of idempotents (projectors) 
PBA into the restriction of the commutative algebra R n to a Boolean 
algebra of idempotents BA. Theorem 0 of Kochen and Specker states that 
a PBA is imbeddable into a BA if and only if for every pair of distinct a, 
b ~ P B A  there is a homomorphism h: PBA--~Z2 such that h(a)~  h(b), 
where Z2 is the field of two elements {0, 1}. 

This requires the existence of a two-valued homomorphism on the 
partial Boolean algebra of subspaces or the corresponding idempotents. 
The main theorem then states that there are no two-valued homomorphisms 
on the PBA of idempotents of a Hilbert space of at least three dimensions. 
My purposes are served by presenting a proof sketch through an adoption 
of Bell's (1966) proof of the result as a corollary of Gleason's (1957) 
theorem. ~ 

Let sl, s2, and s8 be three mutually orthogonal one-dimensional sub- 

2 The proof sketch presented here is also informed by versions of the proof due to 
Belinfante (1973) and Bub (1974). 
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spaces of  a three-dimensional Hilbert space, and let h be a homomorphism 
from the partial Boolean subalgebra into Z2. Then we have 

h(s~) u h(s2) u. h(sa) = h(s~ w s2 u ss) = 1 

and 

h(s,) c~ h(s~) = h(s, n s~) = h(0) = 0 for 1 ~< i ~ j ~< 3 

So for orthogonal triples of lines replaced by orthogonal triads r of unit 
length, h defines a map from the triads onto {0, 1} such that 

(a) h($,) = 1 or 0 (i = 1, 2, 3) 
(b) ~., h( r  1 
(c) If  h(r = 1, then h = 0 for the remaining directions normal to r 

Now assume that h(r = h(r = O. I t  follows that for Ca normal to 
Ct and r h(r = 1. Select any vector (ar + br in the plane spanned by 
Ct and r (ar + bCz) is normal to Ca and so h(ar  + br = 0. Thus we 
have 

(d) f f  h(r = h(r = O, then h = 0 for all other directions in the plane 
of r and r 

By repeated applications of (c) and (d) the theorem is proved and 
(d) is a necessary condition for the success of the proof. Note that (d) implies 
that for any rotation of the triad about r normal to r and r where 
h(r = h(r = 0, h(r = 1. Thus the value of h(r is invariant under 
rotation. This means that the value of h(r does not depend on the other 
members of the orthoriormal set, say r r to which it belongs. That is to 
say, h(r = 1 given that h(r = h(r = 0, regardless of whether Ca belongs 
to (r r Ca} or to (r r r I will refer to this as "basis insensitivity." 
Clearly, if the above is denied, the demand for the imbedding forced by 
condition (II) cannot be met, for the imbedding implies the invariance of 
the value of Ca under rotation about itself. It is this demand that is objected 
to by Bell as follows: 

How did it come about that (B) 3 was a consequence of assump- 
tions in which only commuting operators were explicitly men- 
tioned? The danger was not in fact in the explicit, but in the 
implicit assumptions. It was tacitly assumed that measurement 
of an observable must yield the same value independently of 
what other measurements may be made simultaneously (Bell, 
1966). 

a Bell's (B) is equivalent to my (d). 
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Bell refers to the demand of basis insensitivity as a "tacit assumption." 
As we have seen, this demand is tacit in the sense that it is implied by the 
requirement for the homomorphism forced by condition (I10. This went 
unnoticed by me for some time, and perhaps it has not been clear to others. 

Now, it is important to note that basis insensitivity, without which the 
proof cannot succeed, forces relations between random variables associated 
with noncommuting operators. To see this consider the projection operator 
associated with the subspaces concerned, i.e., consider P(~I), P(~2), P(~a), 
and P($')I, where P(~)  = P(a$l + b$2) and neither a nor b is equal to 
zero. Note that P($~) is defined by a rotation about 4a. We have 

("#" denotes the binary relation of commeasurability) P( 3 # P( 3) 

and 

but not 

P($1) # P($1) 

For quantum mechanics 

P(r # v(r 

(the intransitivity of commeasurability) 

we have ExpP(ff l )= ExpP(~2)= 0 implies 
Exp P (~ )  = Exp P(a~l + bff2) = 0. But for hidden states the expectation 
values correspond to eigenvalues. Thus a relation is forced between the 
value offp(,1) andfp(,,1) where P(~I) and P (~ )  do not commute. We see now 
that this is not an independent fact. It follows from premise (d), which is 
necessary for the Kochen and Specker proof and is forced by the demands 
of the functional identity condition. 

4. THE UNREASONABLENESS OF THE FUNCTIONAL 
IDENTITY CONDITION 

We have seen that condition (II) places demands on hidden variable 
extensions of quantum mechanics that cannot be satisfied. It is true that the 
condition provides an exact mathematical criterion for a hidden variable 
theory. The question is whether it is reasonable. Kochen and Specker 
suggest two grounds for adopting the condition. 

After defining the notion of a function of an observable, the authors 
say: 

Thus the measurement of a function g(A) of an observable A 
is independent of the theory considered--one merely writes g(a) 
for the value of g(A) if a is the measured value of A. The set of 
observables of a theory thereby acquires an algebraic structure, 
and the introduction of hidden variables into a theory should 
preserve this structure (Kochen and Specker, 1967). (Italics are 
mine.) 
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The argument is intended to show that the algebraic structure of  the ob- 
servables of a theory is independent of the theory under consideration. It 
is supposed that this structure is given empirically through the measurement 
of observables and calculations of other observables functionally related to 
them. Now clearly, the functional relations in question are not independent 
of the theory considered. In particular, the algebraic structure is generated 
under the assumption that every observable is determined by the probability 
functionp, i.e., that ifpA, = PB, for every state if, then A = B. This is hardly 
theoretically neutral. It is certainly not given empirically, nor can it qualify 
as a necessity of thought. It is just as natural to question the idea of identity 
of  observables based on statistical agreement. Indeed this is just what is 
emphasized in current hidden variable theories. Of course, it is a legitimate 
assumption to adopt for constructing a statistical theory such as standard 
quantum mechanics. The point is that it is not an assumption that one is 
bound to preserve in a hidden variable extension. So we may conclude that 
the algebraic structure of the observables of a theory is not theory neutral, 
but depends on assumptions that go far beyond what is measured. 

Furthermore, the demand that we should have (fA + fB)(h) = fA(h) + 
fB(;~) for commuting A and B is also questionable. Of course, it holds in the 
case where the state of the system is a common eigenstate. When this is not 
so, quantum mechanics is silent on the question as to whether A + B 
represents the sum of the corresponding operators. It is true that in a simul- 
taneous measurement of A, B, and A + B on a system in a superposition 

of eigenstates of A and B we obtain individual results in accord with 
Exp~ A + Exp~ B = Exp~ (A + B). But this gives no functional relations 
between individual measurements. Since expectation values for hidden states 
correspond to eigenvalues, it is hardly reasonable to demand in general 
that (fA + fB)(;~) = fA(;~) + fB(;~). The point is that the rule for sums of 
commuting operators is an hypothesis that works well for a statistical theory 
such as standard quantum mechanics and it plays a key role in determining 
the algebraic structure of the theory. It is not independent of the theory and 
hence the algebraic structure is not independent of the theory as Kochen and 
Specker suppose. Moreover, this rule cannot reasonably be used to impose 
restrictions on the values of individual measurements as predicted by hidden 
variable theories because in general the rule can only impose relations 
between expectation values and has nothing to say about eigenvalues found 
in single measurements with the sole exception of a system in a common 
eigenstate with respect to A and B. 

The alleged theory independence of the algebra of operators is not the 
only reason given in support of condition (II). The authors further support 
condition (II) by claiming that, while hidden variable theories have explicitly 
demanded only that condition (I') be satisfied, condition (I) is not sufficient 
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since it permits trivial constructions with the common property that random 
variables associated with quantum mechanical operators are independent. 
This is taken as indicative of the need for condition (II), which obviously 
rules out the trivial constructions. 

But condition (I) is not the only criterion appealed to in hidden variable 
constructions. For example, Bohm had insisted that the hidden variables 
depend on both the state and the measuring device. He writes 

However, in our suggested new interpretation of the theory, the 
so called "observables" a re . . ,  not properties belonging to the 
observed system alone, but instead potentialities whose precise 
development depends just as much on the observing apparatus 
as on the observed system . . . .  the distribution of hidden param- 
eters varies in accordance with the differently mutually exclusive 
experimental arrangements of matter that must be used in 
making different kinds of measurements (Bohm, 1952). 

Now this requirement rules out condition (II), and the resulting hidden 
variable theory is nontrivial. It is instructive to see why condition (II) is 
ruled out by Bohm's hypothesis concerning the nature of observables. In 
the proof sketch of the Kochen and Specker theorem we saw that assumption 
(d) implies that the value (1 or 0) assigned to a statement asserting that an 
observable has a certain value is functionally independent of the particular 
eigenbasis chosen. Bohm's condition contradicts this by demanding that the 
value of such a statement functionally depends on the particular eigenbasis 
defined by the measuring apparatus. Thus the Kochen and Specker theorem 
is squarely based on a condition, namely condition (II), that is incompatible 
with a principle hypothesis of a hidden variable theory. In view of this, the 
Kochen and Specker theorem does not provide a reasonable mathematical 
criterion for an acceptable hidden variable reinterpretation of quantum 
mechanics. 

The fact that the Bohm condition [in contrast with condition (II)] 
demands that an observable is assigned a value relative to the specification 
of a particular eigenbasis means that the hidden variable theory does not 
specify simultaneous values for noncommuting operators, but only predicts 
what will be found relative to a measurement sufficiently precise to define 
an eigenbasis. Thus any hidden variable extension of the standard theory 
must satisfy Bohr's dictum that the entire experimental arrangement must 
be taken into account. In short, observables are not properties of systems 
revealed by measurement. Of course, this is hardly a novel view. What is of 
interest is that Bohr's dictum must be satisfied in any hidden variable ex- 
tension of the quantum theory. It follows that complementarity is maintained. 
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It is true that the partial algebra of operators of the standard theory 
is not conserved in the Bohm and Bohm-Bub hidden variable extensions. 
But note that in standard quantum mechanics the partial algebra plays the 
role of assuring complementarity, whereas in the Bohm-Bub hidden variable 
theory (Bohm and Bub, 1966), complementarity is assured by the algorithm 
for generating individual predictions. While it is necessary to retain com- 
plementarity in an acceptable hidden variable theory, it need not be retained 
through the preservation of the algebra of the operators that is peculiar to 
the formulation of the standard theory. 

5. THE KOCHEN AND SPECKER THEOREM AND THE 
LOGICAL INTERPRETATION 

My discussion of the Kochen and Specker theorem would appear to 
be at odds with those investigators who use the result as the foundation of 
the so-called logical interpretation of the quantum theory. There are several 
reasons why this interpretation deserves consideration. First, it contrasts 
sharply with the two most widely held interpretations--the Copenhagen 
and the statistical interpretations. Its proponents are as confident of its 
merits as they are critical of what they judge to be the shortcomings of the 
standard interpretations. Secondly, the principal advocates of the interpreta- 
tion make such heavy and confident use of sophisticated mathematical 
machinery in their exposition of the view as to inspire curiosity about the 
actual basis for the novel claims they make. Also, the very fact that Bub, 
who is presently a leading proponent of the logical interpretation, formerly 
defended the hidden variable approach, is good reason to be curious. 
Finally, the fact that the interpretation is so closely tied to the Kochen and 
Specker proof challenges the more "orthodox" understanding of that proof 
that I have expounded and expanded on in the preceding sections. 

As a matter of history, the logical interpretation has two sources. The 
first track begins with Specker's 1960 paper, "Die Logik nicht gleichzeitig 
entschiedbarer Aussagen." This was followed by two papers by Kochen and 
Specker exploring the logical calculus of partial propositional functions 
(1965a, b). The final contribution of these authors is their study of hidden 
variables, of which Section VII is devoted to "The Logic of Quantum 
Mechanics" (1967). The second track begins with Finkelstein's (1962-63) 
revival of the work of Birkhoff and von Neumann (1936). This was taken 
up by Putnam (1969), who in turn converted Bub and Demopoulos (1974) 
to the logical interpretation. Bub and Demopoulos (unlike Putnam) con- 
centrated their efforts on a formal presentation of the interpretation based 
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squarely on the work of  Kochen and Specker. Thus do the two tracks of  
development merge. 4 

The reader should be warned not to confuse the logical interpretation 
with other approaches to question of  interpretation and foundational studies 
that are loosely described as concerned with "quantum logic." In particular, 
the logical interpretation is completely distinct from the earlier work of  
Birkhoff and von Neumann, the later work of  Finkelstein, and views ex- 
pressed by Jauch, Piron, and Strauss, to name but a few. Indeed the whole 
field of  quantum logic represents a family of  diverse studies and views. 
Jammer (1974) has sorted matters out to some degree but much remains 
to be clarified and it clearly deserves a separate study. The concern of  this 
paper is strictly limited to the logical interpretation as expounded by its 
leading proponents, Bub and Demopoulos. I will proceed by listing the 
essential features of  the interpretation and then consider the basis for the 
distinctive elements of  the interpretation. 

The main components of  the logical interpretation are as follows: 

L1. The interpretation problem consists in specifying the nature of  
the transition from classical mechanics to quantum mechanics. 
This is characterized as a transition from the Boolean event struc- 
ture of  classical mechanics to the partial Boolean event structure 
of  quantum mechanics. 

L2. Standard nonrelativistic quantum mechanics is both a principle 
and a complete theory, s 

L3. A correct understanding of  the role of the event structure of 
quantum mechanics shows that: (a) quantum mechanical systems 
have properties in precisely the same sense as classical systems 
are said to have properties. (This stands in sharp contrast to a 
wholistic account wherein properties of  systems are defined relative 
to an experimental context.) (b) There are states (represented by 
unit rays or one-dimensional subspaces) that do not determine 
whether a property (represented by a projection operator) holds 
or fails to hold. However, it is always determinate whether a 
property holds or fails to hold of  a system, for, at a given time, a 
system has many states---enough to determine whether any 
property holds. (c) Basic propositions of  quantum mechanics 
make assertions about the properties of  individual systems, not 
ensembles of  them. 

4 The data for the first track come from the writings of its participants. The facts about 
the second track are known to me through conversations with Finkelstein, Putnam, 
Bub, and Demopoulos. 

8 The notions of a principle and complete theory are defined in the discussion that 
follows. 
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IA. The interpretation has the consequence that there is no measure- 
ment problem. This argues for its superiority over competitive 
interpretations that do generate a measurement problem. 

I now turn to clarification, analysis, and comment. The expressions 
"logical structure," "event structure," and "possibility structure" are used 
interchangeably in expositions of the interpretation. These expressions refer 
to the partial Boolean algebra of the projection operators (or equivalently, 
the algebra of the associated one-dimensional subspaces) of a separable 
complex Hilbert space and to the logic that may be constructed from the 
algebra. Since an even t  is defined as a one-dimensional subspace, the expres- 
sion "event structure" is appropriate. The logic associated with the Boolean 
algebra makes use of sentences of the form "The value of physical magnitude 
A lies in U." These sentences correspond one to one with the subspaces and 
the associated projectors. 

There is no objection to characterizing the interpretation problem as a 
specification of the nature of the transition from classical to quantum me- 
chanics. Moreover, it is true that it is possible to describe this transition 
in terms of the mathematical framework of both theories by noting that 
whereas classical mechanics has the event structure (i.e., phase space struc- 
ture) of a Boolean algebra, quantum mechanics has the structure of a partial 
Boolean algebra. It is also true that the two structures are remarkably 
different and this difference can be correctly described by noting that the 
latter is not imbeddable in the former. (See Section 3 above.) All of this is 
mathematically correct. However, the question of the significance of this 
specification of the transition for the understanding of the theory is by no 
means settled by its mathematical description. As we shall see, the answer 
to that question depends on other considerations. But first I take up the 
claim that quantum mechanics is a principle and complete theory. (See 
L2 above.) 

Both classical and quantum mechanics are said to be "principle" 
theories (Bub and Demopoulos, 1974). This is short for the claim that both 
theories are "theories of logical structure," where "the logical structure of 
a theory is understood as imposing the most general constraints on the 
occurrence and nonoccurrence of events" (Bub and Demopoulos, 1974). 
Thus logical structure is given a realistic as opposed to a syntactical or 
semantical interpretation. This means that logical structure is postulated as 
an abstract but real feature of the world that determines how events may 
occur, or, to use Bub's picturesque phrase, "how properties hang together" 
(1974). It is undeniably true that the set of projection operators of quantum 
mechanics form a partial Boolean algebra. It is also true that a partial Boolean 
algebra can be translated into a partial Boolean logic just as a Boolean 
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algebra can be translated into a Boolean (i.e., classical) logic. Any arguments 
against the logical interpretation to the effect that  the partial Boolean logic 
is suspect as a logic are simply bad arguments. But this hardly amounts to 
an endorsement of  the logical interpretation. The question that  naturally 
arises at this point is whether there is any reason to accept the assertion that 
this logic (or algebra) should be "understood as imposing the most general 
constraints on the occurrence and nonoccurrence of  events." The straight- 
forward way of understanding the logical structure of  quantum mechanical 
observables is to understand it as defined via the set of  statistical states. 
Indeed, this is how Kochen and Speeker proceed. Equivalence of  magnitudes, 
functional relationships, and commeasurability are defined via the set of  
statistical states. The theoretical motivation for this procedure consists in 
the fact that there is no reason for treating magnitudes of  the theory as 
equivalent aside f rom the fact that they have identical probability distribu- 
tions for every statistical state. The question of  the significance of  this logic 
for the understanding of  quantum mechanics has no unique answer. However, 
it does have a reasonable answer that does not lend support to the claim that 
quantum mechanics is a theory of  logical structure in the sense specified 
by the logical interpretation. I t  is natural to understand the partial Boolean 
logic of  properties associated with projectors as a logic of  complementary 
dispositional properties, the equivalence of  which reflects nothing but the 
identity of  the statistical distribution of  the associated magnitudes. The use 
of  the term "natural"  here is justified by two considerations. The replace- 
ment of  a classical (i.e., Boolean) logic by a partiaJ. Boolean logic is a neces- 
sary and sufficient condition for correcting the defect that meaningless 
compound sentences can be formed from meaningful sentences if  the 
predicates concerned are dispositional. 6 To my knowledge, Martin Strauss 

e An example of a dispositional (or reactive) predicate is "soluble in water." Strauss 
(1972) points out that such predicates can only be partially rather than explicitly 
defined. For example, "x is soluble in water" is defined as "x is in water and x is 
soluble in water if and only if x is dissolving in water." Note that such predicates 
cannot be defined independently of the conditions under which the corresponding 
properties are observed. If, following Strauss, we represent two different dispositional 
predicates by X and Y and their defining conditions by E1 and E2 and by E3 and 
E4, respectively, the above definition may be written: E1 & X if and only if E2. Some 
other dispositional predicate Y may be defined as: E3 & Y if and only if E4. The 
conjunction of X and Y is then defined as (El & Es) & (X & Y) if and only if 
(E2 & E4). But the conditions E~ & E3 and the conditions E2 & E4 may exclude one 
another. Hence, the conjunction X & Y may be undefined, even though X and Y are 
separately definable. For an informative treatment of the dispositional character of 
the magnitudes of quantum mechanics, the interested reader should refer to "Do 
Quanta Need a New Logic ?" by John Stachel, to appear in the University of Pittsburgh 
Series in the Philosophy of Science. 
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is the first and only investigator to point this out (1972). Unfortunately, 
his observation has been ignored. 7 

Secondly, maximally consistent sets of sentences, each of which asserts 
that a system has a specific property at a common time, belong to different 
Boolean subalgebras of a partial Boolean algebra and correspond to sets 
of  properties that are ordinarily called "complementary" following Bohr. 
Thus a partial Boolean logic is a logic of  complementary dispositional 
properties. On this view the logic provides a consistent and logically rigorous 
way for talking about the properties of individual systems in the spirit of 
Bohr. There is no claim that the logic has the ontological status of being an 
elemeht of reality that constrains events. 

We see then that there is a sharp difference between the two approaches 
to quantum logic. The approach outlined above might be called "semantical', 
to mark the fact that the logic provides a way of  talking about individual 
measurements that is consistent with the statistical predictions of the theory. 
On the other hand, the quantum logical interpretation is called "realistic" 
by its proponents to stress that the logical structure is a "feature" of the world 
that constrains the occurrence of events. The former is helpful in so far as 
it is a logical framework for an exact explication of the central tenets of the 
Copenhagen interpretation. The latter involves the denial of that interpreta- 
tion in its treatment of properties, measurement, and its postulation of  
logical structure as an element of reality. 

What are the reasons given for the postulation of logical structure in 
the sense specified by the logical interpretation? The first reason given by 
Bub is that it is necessary to postulate that the observables of quantum 
mechanics have the structure of a partial algebra if we are to understand the 
Kochen and Specker proof properly. He says 

Only by assuming that equivalence in the partial algebra of 
magnitudes is not merely statistical can we claim the Kochen 
and Specker theorem as a proof of the impossibility of repre- 
senting the statistical states of the theory as measures on a 
classical probability space (Bub, 1974). 

Bub therefore objects to defining commeasurability, functional relation- 
ship, and, in particular, equivalence in the algebra of magnitudes in terms 
of  the set of statistical states. And he accuses Kochen and Specker of con- 
tributing to a "misunderstanding" of their proof by employing such a 
definition. The misunderstanding in question is the view that the proof 
only shows that there is no "imbedding of a partial algebra of quantum 

7 Credit goes to Strauss as the first to recognize the importance of partial Boolean logic 
for studying problems of interpretation of quantum mechanics. 
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mechanical magnitudes into a commutative algebra of random variables on 
a probability space." On this view one might object to the proof in the manner 
of the preceding sections of this paper. That is to say, there is simply no 
compelling reason to treat random variables corresponding to equivalent 
magnitudes as equivalent in a hidden variable reinterpretation of the theory 
when equivalence is determined by agreement in probability distributions. 
One might well postulate that the observables, represented by different ran- 
dom variables in a hidden variable theory, are statistically equivalent only 
for probability distributions corresponding to the statistical states of standard 
quantum mechanics. Clearly, this reasoning undercuts the force of condition 
(II) of the proof. Thus, Bub insists that the partial algebra is fundamental-- 
that it does not merely reflect the statistical distributions of the standard 
theory. Hence, he postulates the logical structure outright without definition 
of equivalence of observables via statistical distributions. 

Given this, we are told 

The contribution of Kochen and Specker lies in showing that 
the problem of hidden variables is not that of fitting a theory-- 
i.e., a class of event structures--to a statistics . . . .  Rather the 
problem concerns the kind of statistics definable on a given class 
of event structures. The Kochen and Specker proof is a demon- 
stration that the statistics definable on the event structures of 
quantum mechanics is not representable by probability measures 
on a classical probability space (Bub, 1974). 

Four brief comments are in order. First: The argument for the postula- 
tion of the logical structure of the magnitudes amounts to nothing more 
than this: assume condition (II) and the Kochen and Specker proof excludes 
hidden variables. We have seen that condition (II) is unreasonable. Second: 
There is absolutely no theoretical motivation for treating quantum mechan- 
ical magnitudes as equivalent aside from agreement of statistical distributions. 
Third: To be sure, the problem of hidden variables is not merely the fitting 
of a theory to a statistics. Bub is right in pointing out that this can be done 
in any number of trivial ways. But we need not assume condition (II). 
Whatever problems there are with hidden variable theories concerns their 
theoretical completeness and testable experimental consequences. These are 
problems of physics, not of a priori conditions such as condition (II). 
Fourth: Even if one should postulate the structure of the magnitudes in- 
dependent of statistical distributions, this is no reason for assuming that 
this structure is a feature of reality that imposes the "most general constraints 
on the occurrence and nonoccurrence of events." At most it mirrors func- 
tional relationships among the magnitudes of the standard theory and 
provides a rigorous way of reporting individual measurements that is bound 



700 Hockney 

not to run into problems because the logic is a logic of complementary 
dispositional properties. 

The second reason given by Bub for postulating the logical structure 
as independent of the statistical states is that the "completeness problem 
makes sense only with respect to a given class of structures" (1974). The 
completeness to which Bub refers is established by Gleason's theorem (1957). 
This is the very theorem from which the Kochen and Specker result follows 
as a corollary. Gleason's result is not usually thought of as a completeness 
result because the problem he addresses is the foundational problem of 
establishing von Neumann's statistical algorithm for quantum mechanics 
~(K) -- Tr (WP), where W is a statistical operator and P the projector onto 
K] on fewer and less suspect assumptions than those employed by von 
Neumann. Now it so happens that Gleason's theorem can be correctly 
understood as demonstrating a kind of statistical completeness. But as we 
shall see, this concept of completeness has nothing to do with the complete- 
ness Bohr attributed to quantum mechanics nor with the element of com- 
pleteness focused on by hidden variable theorists such as Bohm and even 
Bub when he previously championed hidden variable theories. 

Gleason's theorem can be understood as showing "that the quantum 
algorithm generates all possible generalized probability measures on the 
partial Boolean algebra of propositions of a quantum mechanical system" 
(Bub, 1974). Note that completeness is defined relative to a "class of event 
structures," that can be alternatively described as the partial Boolean 
algebra of the dosed linear subspaces of a Hilbert space or the associated 
projectors or corresponding propositions. Bub's point is that the complete- 
ness of the statistics for the partial algebra shows that the partial algebra 
is fundamental and thus that any hidden variable reinterpretation is "un- 
interesting if the structure of the magnitudes is not preserved" (1974). In 
other words, Gleason's proof guarantees completeness relative to a class of 
structures that Kochen and Specker show to be fundamental. Thus Bub says 

However, the significance of Gleason's theorem for the complete- 
ness of quantum mechanics is only fully brought out by Kochen 
and Specker's notion of a partial algebra, which completely 
clarifies the sense in which the Boolean event structures of 
classical mechanics are generalized by quantum mechanics (1974). 

Now the statistical completeness established by Gleason's theorem has 
no bearing on the question of completeness addressed by Bohr and Bohm. 
Bohr insisted that quantum mechanics was complete in the sense that there 
could not be any other meaningful physical parameters that enter into the 
specification of the state of a system. Bohm denies this. Clearly, a hidden 
variable theory such as Bohm's is incompatible with Bohr's assertion of 
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completeness but compatible with the statistical completeness established 
by Gleason. It is one thing to assert that all probability measures are given 
by the quantum mechanical algorithm relative to the closed linear subspaces 
of a Hilbert space and quite another to assert that all possible empirically 
relevant information is included in the specification of the state in standard 
quantum mechanics. 

The proponents of the logical interpretation have confused two entirely 
different concepts of completeness, namely, statistical completeness and 
completeness of the specification of the state. In particular, the fact that 
standard quantum mechanics is statistically complete does not warrant the 
conclusion that "equivalence in the algebra of the projectors is not merely 
statistical" (Bub, 1974). The remainder of my remarks about the logical 
interpretation are addressed to items L3 and L4 as specified above. 

In his remarks on the Kochen and Specker proof viewed as a con- 
sequence of Gleason's theorem, Bell says: 

In fact it will be seen that these demonstrations require from 
the hypothetical dispersion free states, not only that appropriate 
ensembles thereof should have all measurable properties of 
quantum mechanical states, but certain other properties as well. 
These additional demands appear quite reasonable when results 
of measurement are loosely identified with properties of isolated 
systems (1966). 

The logical interpretation endorses just what Bell points out as a weakness 
of hidden variable proofs. It treats properties as properties that systems have 
in the classical sense. The question is whether this account holds up. Bell 
cites Bohr's point that it is impossible to maintain a "sharp distinction 
between the behavior of atomic objects and the interaction with the measuring 
instruments which serve to define the conditions under which the phenomena 
appear" as evidence against the assumption that quantum mechanical 
systems have properties in the classical sense. But one not already convinced 
of Bohr's point must examine the claim of the logical interpretation on its 
own merits. 

It is well known that quantum mechanical properties (strictly speaking, 
equivalence classes of properties) can be represented by projection operators. 
The construction is due to von Neumann (1955). Although the logical 
interpretation employs this construction, agreement with yon Neumann is 
confined to the construction. The interpretation is radically different. 

The claim o f  the logical interpretation is that a quantum mechanical 
system S has all its properties in just the sense in which a classical system 
is said to have its properties and that "the properties of S which obtain 
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simultaneously include incompatible 8 properties" (Demopoulos, 1976; Bub, 
1974, 1976). I will refer to this claim as the property postulate. Clearly, the 
property postulate represents a bold departure from all previous interpreta- 
tions of the theory. In essence, the argument for the property postulate 
purports to show that the treatment of properties in quantum mechanics is 
"exactly analogous" to the classical case. I now turn to the details of the 
argument. 

First, the conditions under which a classical and quantum system has 
a property are defined in analogous ways. In classical mechanics the idem- 
potent magnitudes representing properties are the characteristic functions 
Xr [where F = f s  f~: ~ -~ R, U ~_ R, R is the real line; and ~ is a 
subset of 6N-dimensional Euclidean space). In quantum mechanics the 
idempotents are the projection operators P. For classical mechanics, a 
property represented by Xr holds for a system S "if and only if S is in a 
state w such that Xr(W) = 1" (Demopoulos, 1976). Here it is crucial to under- 
stand that, for the logical interpretation, the concept of a state in both classical 
and quantum mechanics is not a statistical concept (Bub, 1976; Demopoulos, 
1976). A classical state is represented by a point w in ~ (a subset of 6N- 
dimensional Euclidean space) and it is associated with a pure statistical 
state, namely, the measure on the field of subsets of ~. Analogously, a 
quantum state is represented by a (unit) ray K (or one-dimensional subspace) 
in a complex separable Hilbert space H and it is associated with a pure 
statistical state, namely, a measure on the closed linear subspaces of H. 
Now with reference to this concept of state, the logical interpretation defines 
the holding of a property for a quantum mechanical system in strict analogy 
with the classical case as follows: A property represented by a projection 
operator P holds for a quantum mechanical system S if and only if S is in 
a state K such that P(K) = 1 (Demopoulos, 1976; Bub, 1976). 

Now the fact that the logical interpretation gives strictly analogous 
definitions for the holding of a property in classical and quantum mechanics 
hardly suffices to establish the property postulate. Indeed, an elementary 
objection appears to apply. In the quantum case (unlike the classical case) 
there are states K such that they do not determine whether or not a given 
property P holds. This objection focuses on what is central to the logical 
interpretation: 

The determinateness of the holding of P is completely inde- 
pendent of whether or not the holding of P is determined by 
every state of S. I regard this claim as central to the logical 
interpretation of quantum mechanics. This is obscure if it is 

8 The term "incompat ible"  is used in the logical interpretation to refer to properties 
that  are not  commeasurable. 
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assumed that P is a property of a state rather than a property of 
S and that S has only a single state K (Demopoulos, 1976; of. 
Bub, 1976). 

The claim is that although S is characterized by a single statistical state, 
S has enough (nonstatisticaI) states to determine the truth or falsity of each 
sentence attributing a property to S. This being so, "the properties of S 
that obtain simultaneously include incompatible properties." 

Now a sentence of the form "S has P1 & S has P2", where P1 and Pz 
are incompatible properties, is not defined in the partial Boolean logic of 
quantum mechanical propositions. How then can the properties of S that 
obtain simultaneously include incompatible properties? At most, one could 
claim that S is characterized by one set of compatible (i.e., commeasurable) 
properties. In this case there is neither need nor justification for an in- 
terpretative hypothesis affirming that at a given time a system has a plurality 
of (nonstatistical) states. 

The answer given by the logical interpretation is that the absence of a 
simultaneous truth value assignment to "S has PI" and "S has P2," where 
P1 and P2 are incompatible properties, does not imply that P~ and P2 cannot 
obtain simultaneously: 

That simultaneous truth value assignments do not exist is a fact 
about the structure of N (the partial Boolean logic) which has 
nothing to do with what occurs simultaneously (Demopoulos, 
1976). 

If the argument is meant to show that the properties of S that obtain 
simultaneously include incompatible properties, then the argument is invalid. 
This conclusion does not follow from the premise that the absence of simul- 
taneous truth value assignments has nothing to do with what obtains 
simultaneously. All that follows is that one cannot draw any conclusions 
about whether or not incompatible properties obtain simultaneously. 

On a more generous reading the argument may be taken to show that 
it is possible that incompatible properties obtain simultaneously. That is 
to say, this possibility is not ruled out by the fact that a statement to this 
effect is not defined in the partial Boolean logic of quantum propositions. 
On this reading the property postulate is not required by the partial Boolean 
logic of properties. So what is said to be central to the logical interpretation-- 
namely, the property postulate--is revealed to be an assumption not implied 
by the quantum logic of properties. At best, it is an article of faith totally 
unmotivated by theory or experiment. Moreover, it is difficult to make 
sense of the idea that incompatible properties obtain simultaneously since 
this idea is not expressible by any true (or false) sentence in the partial 
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Boolean logic of  properties. I t  is far better to say, "Where one cannot assign 
truth values, let one be silent." 

By the same token it is difficult to make sense of  the notion that, at a 
given time, a quantum mechanical system "has many states"--sufficient to 
establish the truth or falsity of  every statement asserting that the system has 
a property. Of  course, there are sufficient (unit) rays to define the truth or 
falsity of  each such statement, but this does not mean that a system can be 
characterized as being in these states simultaneously. Clearly, such a 
characterization would violate the uncertainty relations. 

An even more serious objection concerns the assumption that every 
quantum system is in a state represented by a unit ray. This concept of  state 
ignores the role of  mixtures in quantum theory and the implications of  the 
concept of  a mixture for the possibility of  an individual state concept that 
applies universally. I t  is the contrast of  quantum mechanics with classical 
statistical mechanics that renders the state concept of  the quantum logical 
interpretation unacceptable. Although classical ensembles are often charac- 
terized as mixtures, it is legitimate to assume that an individual state concept 
applies universally and to postulate that a system is always in a pure state 
represented by a point w of  phase space. Contrary to the logical interpreta- 
tion, there is no analog for this in quantum mechanics. In classical physics 
mixed ensembles can be reduced to a unique set of  pure subensembles thus 
making possible the interpretation of  any ensemble as a collection of  in- 
dividual systems in definite states. In quantum mechanics mixed ensembles 
cannot be reduced to a unique set of  pure subensembles. A plurality of  
reductions is possible (von Neumann,  1955). Thus the assignment of  a state 
vector to individual quantum system is ambiguous and leads to paradoxes 
(Park, 1968). 

Park (1968) points out a second crucial difference between classical 
and quantum ensembles. When a pure classical ensemble interacts with a 
second pure classical ensemble, it remains pure during its temporal develop- 
ment. Thus a classical system can be meaningfully assigned a sequence of  
states throughout its temporal development. By way of  contrast, a closed 
pure quantum ensemble does remain homogeneous throughout its temporal 
development but upon interaction with a second pure ensemble is converted 
into a mixture. This is often referred to as "quantum entanglement. ' '9 

9 "Classical entanglement" differs from quantum entanglement in two ways. First, 
classical entanglement occurs when a pure ensemble E1 is converted into a mixture 
by interaction with a mixed ensemble Ez, whereas quantum entanglement occurs under 
conditions of maximal homogeneity, i.e., both ensembles are initially pure. Secondly, 
classical entanglement is not problematic for an individual state concept since the 
E1 "ensemble" consists of a "distribution of different kinds of systems, characterized 
by different Hamiltonians" (Park, 1968). Hence the inhomogeneity of E2 is reflected 
in the Hamiltonians characterizing El. Clearly there is no such explanation for 
quantum entanglement. 
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Since initially pure quantum ensembles lose their homogeneity through 
entanglement, one cannot always give an independent account of the temporal 
development of initially pure quantum ensembles. So it is not always possible 
to assign a temporal sequence of state vectors to a quantum system. It is 
interesting to note that these two objections also rule out the idea that a 
quantum system always has a complete set of compatible properties. This is 
a weaker thesis than the property postulate and its accompanying individual 
state concept. Thus the nature of quantum mixtures places severe restrictions 
on the class of permissible interpretations. 

The final feature of the logical interpretation to be considered is the 
claim that there is no measurement problem (Bub, 1974, 1976; Demopoulos, 
1976). Many physicists share the opinion that the measurement problem is 
a pseudoproblem, but the reasons for this opinion differ sharply from the 
reasons offered by the proponents of the logical interpretation. The difference 
may be exhibited as follows. 

Consider a microsystem S and a measuring instrument M that measures 
a magnitude A of S. For my purposes it suffices to exhibit an elementary 
description of the measurement process. Let us assume that there is an 
interaction between S and M such that the state of the initial composite 
system S + M is transformed by a unitary transformation U that establishes 
a unique correspondence between the eigenvalues a~ of A and b~ of a pointer 
reading magnitude B of M. If the initial state of the microsystem S is 
1r = ~, <~,l~>la,> and the initial state of the apparatus is 4, the measure 
interaction results in the transition 

(M-l) Vlr = W> = Y. 
t 

where ~, (/3,) is an eigenvector corresponding to the eigenvalue a~ (b~). 
(M-l) may be understood as meaning that if the experiment were 

repeated many times with identical state preparation conditions for S and 
M, the relative frequency of b~ would be found to be I<u~[$>] 2. This is 
identical with the probability of S being found to have the value a~ of mag- 
nitude A. The reader will recognize this as characteristic of the statistical 
interpretation of the theory in which the state vector is understood as 
characterizing an ensemble of similarly prepared systems. This reading of 
(M-l) reflects the verifiable statistical predictions of the theory and generates 
no difficulties for the notion of measurement. 

However, if one assumes that the state vector completely characterizes 
an individual system and that the measuring apparatus is to be analyzed 
quantum mechanically, the interpretation of (M-l) then becomes prob- 
lematic, for (M-l) is a coherent superposition of vectors corresponding to 
distinct (pointer) values b,. This means that the pointer is in a superposition 
and does not have a definite reading at any time. There are an enormous 



706 Hoekney 

variety of proposals of how to solve or avoid this problem. The logical 
interpretation offers the solution that the measurement problem can be 
avoided by assuming that a system has an atomic property even though it 
is represented by a vector that is not in the one-dimensional subspace that 
is in the range of the projection operator representing the property (Bub, 
1974, 1976; Demopoulos, 1976). On this assumption the composite system 
S + M represented by [r = ~ really does have a property 
corresponding to a value b~ of B and a~ of A for some i. Measurement merely 
reveals what these properties are (Bub, 1974). Thus the logical interpretation 
appeals to the property postulate to avoid problems of measurement. If 
my reasons (given above) for rejecting the property postulate are correct, 
the quantum logical interpretation fails to avoid interpretative problems 
concerned with measurement. 

It is instructive to note that the proponents of the logical interpretation 
have failed to appreciate that although the ensemble of composite systems 
S + M remains homogeneous throughout its temporal development, the 
subsystems S and M are in general converted into mixtures. For this reason 
there is no theoretical basis for the claim that the observable A has a definite 
value when the ensemble of composite systems is represented by the 
vector [~b'>. 

6. CONCLUDING REMARKS 

The purpose of these remarks is to obviate any misunderstandings 
that may result from nay analysis of the Kochen and Specker proof and the 
logical interpretation of quantum mechanics. First, the paper is not to be 
taken as an endorsement of any hidden variable theory. However, the 
continued interest in hidden variable theories not ruled out by present 
experiments is fully consistent with the conclusions of this study. They are 
best described as explorations of intuitive ideas that may illuminate the 
"quality of quantum interconnectedness" (Bohm and Hiley, 1975). Strong 
elements of nonlinearity are introduced, and this sacrifices the simplicity 
of  the standard theory. But this cannot justify a rejection of these explora- 
tions. Simplicity--a concept that is notoriously difficult to define--is no 
guarantee of truth. 

Secondly, my reference to the partial Boolean algebra of dispositional 
complementary properties is not to be understood as an endorsement of an 
individual interpretation, i.e., an interpretation that postulates that the 
standard theory deals with individual entities with dispositional properties. 
I consider the properties in question as responses of measuring systems to 
preparation processes. The entities are only idealizations that arise from 



Hidden Variable Proof 707 

treating the measured magnitudes as properties of enduring objects. Quantum 
logic is a logic of measurable magnitudes, but no more. 
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